
© Copyright 1992 National Instruments Corporation.
All Rights Reserved.

LabWindows®

Guidelines for Interrupt and DMA
Programming in Loadable Object Modules

December 1992 Edition

Part Number 320412-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
(800) 433-3488 (toll-free U.S. and Canada)
Technical support fax: (512) 794-5678

Branch Offices:
Australia 03 879 9422, Belgium 02 757 00 20, Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521
Denmark 45 76 73 22, Finland 90 5272321, France 1 48 65 33 70, Germany 089 714 50 93, Italy 02 48301892,
Japan 03 3788 1921, Netherlands 01720 45761, Norway 03 846866, Spain 91 896 0675, Sweden 08 984970,
Switzerland 056 27 00 20, U.K. 0635 523545

© National Instruments Corporation iii December 1992 Edition

Contents

Chapter 1
Programming Guidelines for Installing Interrupts and Performing DMA

Writing Interrupt Routines... 1-1
Accessing Memory from Interrupt Handlers... 1-1

Restrictions on Interrupt Handlers... 1-2
Determining the Type of Interrupt to Use ... 1-2

Timer Tick Interrupt ... 1-2
Passup Interrupts ... 1-3

Loss of Interrupts During Mode Switches... 1-4
Accessing Absolute Addresses ..1-4
Performing DMA Operations ..1-5
Providing Support for Stopping Asynchronous I/O... 1-5

Suspending Asynchronous I/O ..1-6
Standalone Applications..1-7

Example–Installing a Timer Tick Interrupt Handler ... 1-7
C Routines for Timer Tick Interrupt Handler ... 1-7
Assembly Code for the Interrupt Handler ... 1-7

Example–Installing a Passup Interrupt Handler ..1-8
C Routines for Installing and Removing the Interrupt ..1-8
Assembly Code for the Interrupt Handler ... 1-9

LabWindows Callable Functions... 1-10
_deregister_stop_functions..1-10
_deregister_suspend_functions ... 1-10
_get_absolute_address ... 1-10
_install_interrupt ... 1-11
_lock_segment ... 1-12
_register_stop_functions ... 1-12
_register_suspend_functions ... 1-13
_set_absolute_access ... 1-14
_uninstall_interrupt ... 1-14
_unlock_segment ... 1-15

Chapter 2
Programming Guidelines for Installing Bimodal Interrupt Handlers

Accessing Memory from Bimodal Interrupt Handlers ... 2-1
Coding Bimodal Interrupts ... 2-2

Installing the Bimodal Interrupt Handler ... 2-2
Coding the Interrupt Handler.. 2-2
Removing the Bimodal Interrupt Handler .. 2-3

Example–Installing a Bimodal Interrupt Handler... 2-3
C Routines for Installing and Removing the Interrupt ... 2-3
Assembly Code for the Interrupt Handler .. 2-4

LabWindows Callable Functions.. 2-6
_install_interrupt 2-6
_lock_segment_low.. 2-7
_uninstall_interrupt .. 2-7
_unlock_segment_low.. 2-8

© National Instruments Corporation 1-1 December 1992 Edition

Chapter 1
Programming Guidelines for Installing
Interrupts and Performing DMA

This chapter contains general guidelines for coding and installing interrupt handlers and performing DMA transfers
from within LabWindows loadable object module code. The guidelines apply to object module code for both
instrument drivers and external modules.

All of the functions discussed in this document are available both within the LabWindows interactive program and
in the LabWindows standalone system libraries. Modules that follow the guidelines in this document can execute
correctly both in the LabWindows interactive program and in standalone programs linked with the LabWindows
libraries.

Writing Interrupt Routines

Warning: Due to expected revisions in the DPMI (DOS Protected Mode Interface) standard, the methods outlined
in this document for installing interrupts may change in the future.

Functions called by an interrupt routine must be in the same code segment as the interrupt routine.

There are two types of interrupt routines: passdown or passup. With passdown interrupts, the interrupt handler is
always executed in real mode. If the selected interrupt occurs in protected mode, a mode switch occurs and the
interrupt is processed in real mode. With passup interrupts , the interrupt handler is always executed in protected
mode. If the selected interrupt occurs in real mode, a mode switch occurs and the interrupt is processed in protected
mode.

Accessing Memory from Interrupt Handlers

Extended memory is not accessible in real mode. Because passdown interrupts are handled in real mode, passdown
handlers can only access data that is stored in conventional memory.

Furthermore, any data accessed by an interrupt handler must be locked in memory. The default data segment is
locked in conventional memory by LabWindows. You can explicitly lock other segments in extended memory by
using the _lock_segment function.

The rules for accessing memory in interrupt handlers are listed as follows:

Passdown Handlers: Any data accessed must be in the default data segment.

Passup Handlers: Any data accessed must either be located in the default data segment or locked in extended
memory using _lock_segment .

Note: The near keyword in Microsoft C and Borland C is used to place data in the default data segment. The far
keyword is used to place data in a far data segment. In addition, the Microsoft C Gt compiler flag and the
Borland C Ff compiler flag can be used to force data items larger than a specified size into a far data
segment. The near and far keywords override the Gt and Ff flags.

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-2 © National Instruments Corpora tion

Restrictions on Interrupt Handlers

Passup interrupt handlers are not allowed to chain to the previously installed interrupt handler. In general, the
sharing of hardware interrupt lines is not supported.

A passdown interrupt handler should not be in the same code segment as a passup interrupt handler.

Determining the Type of Interrupt to Use

With the exception of timer interrupt handlers, National Instruments recommends installing all interrupt handlers as
passup interrupts. Timer tick interrupt handlers must be installed under interrupt number 08h as a passdown
interrupt. Interrupt number 1Ch cannot be used.

Timer Tick Interrupt

This section provides guidelines for installing and removing a passdown timer tick interrupt handler. Example
source code showing the installation, coding, and removal of a timer tick interrupt handler is included at the end of
this document.

 Installing the Handler

Install the passdown interrupt routine using the following LabWindows function call:

int _install_interrupt (int vec_num,
void *rm_addr,
void *pm_addr,
void ***rm_chain_ptr,
void ***pm_chain_ptr);

The address of the timer tick interrupt handler must be passed in rm_addr . The parameters pm_addr and
pm_chain_ptr must be NULL. rm_chain_ptr is the address of a pointer to a function pointer. The value
returned in rm_chain_ptr must be stored in the default data segment and is used to chain to the previously
installed timer interrupt handler. All timer tick handlers must chain to the previously installed interrupt handler.

 Coding the Interrupt Routine

The first operation a timer interrupt handler should perform is chaining to the previously installed interrupt handler.
Chaining ensures that the BIOS timer interrupt handler code is executed first.

A timer tick interrupt handler should not be in the same code segment as a passup interrupt handler.

All data accessed by a timer interrupt handler must be in the default data segment.

Never use the processor instruction STI to enable interrupt requests in a timer tick interrupt handler.

Never use the SEG operator in a passdown interrupt routine.

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-3 December 1992 Edition

 Removing the Handler

Use the LabWindows function call _uninstall_interrupt to restore the original real mode interrupt handler.

int _uninstall_interrupt (int vec_num,
 void *rm_addr,
 void *pm_addr);

vec_num , rm_addr , and pm_addr must be the same values passed to _install_interrupt .

Passup Interrupts

This section provides guidelines for installing and removing a passup interrupt handler. Example source code
showing the installation, coding, and removal of a passup interrupt handler is included at end of this document.

 Installing the Passup Interrupt Handler

1. Lock into memory any variables accessed by the interrupt routine. These variables include data items explicitly
declared or dynamically allocated within the object module as well as user variables that are passed to object
module functions. Lock variables into memory using the following LabWindows function:

long _lock_segment (void *pm_ptr)

pm_ptr is a pointer to the variable being locked. If the function fails, a NULL is returned. Otherwise, ignore
the return value.

Note: Variables in the default data segment do not need to be locked.

2. Install the passup interrupt routine using the following LabWindows function call:

int _install_interrupt (int vec_num,
void *rm_addr,
void *pm_addr,
void ***rm_chain_ptr,
void ***pm_chain_ptr);

The address of the passup interrupt handler must be passed in pm_addr . The parameters rm_addr,
rm_chain_ptr must be NULL. Passup interrupt handlers are not allowed to chain to the previously installed
interrupt handler. Therefore, the parameter pm_chain_ptr must be NULL.

 Removing the Passup Interrupt Handler

1. Restore the original protected mode interrupt handler by using the following LabWindows function call:

int _uninstall_interrupt (int vec_num,
 void *rm_addr,
 void *pm_addr);

vec_num , rm_addr , and pm_addr must be the same values passed to _install_interrupt .

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-4 © National Instruments Corpora tion

2. Unlock any previously locked variables by using the following LabWindows function:

void _unlock_segment (void * pm_ptr);

The same pointer must be used to both lock and unlock the variable. If you called _lock_segment on the
same pointer more than once, you must call _unlock_segment on the pointer an equal number of times. If
a locked variable is dynamically allocated, you must unlock the variable before freeing it.

Loss of Interrupts During Mode Switches

Interrupt servicing can be delayed if the interrupt occurs during a mode switch. Mode switches are caused by clock
interrupts, mouse movement, DOS service calls (such as file I/O), and GPIB handler calls. In addition, a passup
interrupt can cause a mode switch if the interrupt occurs when the processor is in real mode. Depending on the
computer, the maximum potential delay for a passup interrupt can be as much as 4 milliseconds or as little as 200
microseconds. If more than one interrupt is received during a mode switch, all interrupts except the last one are lost.

Accessing Absolute Addresses

LabWindows provides transparent access for a number of important real mode segments. Transparent access
means that a segment value such as B000 or F000 addresses the same physical memory in either protected or real
mode. There are 48 transparent segments:

A000, A200, A400, ..., FE00

An absolute address is accessed through a pointer constructed from one of the transparent segments. Before
accessing an absolute address, its segment must be registered as either a code or data segment using the function:

int _set_absolute_access (unsigned int seg, int access);

The parameter seg must be one of the segment values listed above (A000...FE00). The parameter access
indicates whether the segment is data or code. 0 indicates data, and 1 indicates code. set_absolute_access
returns a zero if successful or a nonzero if failed.

Example

#include <dos.h>

struct IO_REGS
{
 int register1;
 int register2;
 int register3;
};

setup()
{
 struct IO_REGS *p;

/* construct pointer to segment C000, offset A00 */
 FP_SEG(p) = 0xC000;
 FP_OFF(p) = 0x0A00;

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-5 December 1992 Edition

/* set segment C000 to access DATA */
 _set_absolute_access(0xC000, 0);
 .
 .
 .
/* move data into memory mapped I/O */
 p->register1 = 0xFFFF;
 .
 .
 .
}

Performing DMA Operations

A DMA transfer buffer must be locked into memory while DMA transfers are in progress. Use the following
LabWindows function to lock the buffer:

long _lock_segment (void *pm_ptr);

_lock_segment locks a buffer into extended memory. pm_ptr is a pointer to the buffer being locked. If
successful, _lock_segment returns the absolute nonsegmented physical address of the locked buffer. Otherwise,
it returns NULL.

If you need to obtain the absolute address of the buffer (or a point within the buffer) after you have locked it, use the
following function:

long _get_absolute_address (void *pm_ptr);

After the DMA operations are completed, unlock the buffer using the following function:

void _unlock_segment (void * pm_ptr);

The same pointer must be used to lock and unlock the buffer. If you called _lock_segment on the same pointer
more than once, you must call _unlock_segment on the pointer an equal number of times. If a locked buffer is
dynamically allocated, you must unlock the buffer before freeing it.

Providing Support for Stopping Asynchronous I/O

LabWindows must uninstall all interrupt handlers, terminate all DMA transfers, and unlock all variables and buffers
on certain occasions, such as when the user wants to temporarily exit to a DOS shell. Object modules that install
interrupt handlers, perform DMA transfers, or lock data in memory must provide a way for LabWindows to uninstall
the handler, terminate the transfer, or unlock the data. These operations are accomplished through a message
function and a stop function, which are registered with LabWindows by calling the following routine:

void _register_stop_functions (void (*message_function)(char *),
 void (*stop_function)(void));

The stop function must perform the following actions:

• Stop any DMA transfers.

• Uninstall all previously installed interrupt handlers.

• Unlock all previously locked variables and buffers.

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-6 © National Instruments Corpora tion

• Deregister the message and stop functions by calling the following routine:

void _deregister_stop_functions (void (*message_function)(char *),
 void (*stop_function)(void));

Before calling the stop function, LabWindows sometimes displays a dialog box describing the activity that must
be terminated and giving the user the option of canceling the request. The message function is used to help create
this dialog box. The message function takes the address of a character buffer as a parameter and places a
message into the buffer, up to a maximum of 60 characters. The message must describe the type of activity that
will be terminated when the stop function is called.

Suspending Asynchronous I/O

There may be situations when you want to suspend asynchronous I/O rather than stop it. For example, the
LabWindows RS-232 Library suspends all RS-232 I/O through a suspend function activity while a user is shelled
out to DOS. Any open communication ports are temporarily closed before the user exits to the DOS shell. When
the user returns from the DOS shell, the communication ports are reopened through a restart function. Object
modules can register their own suspend and restart functions with LabWindows by calling the following
routine:

void _register_suspend_functions (void (*suspend_function)(int restart),
 void (*restart_function)(void));

The suspend function must perform the following actions:

• Stop any DMA transfers.

• Uninstall all previously installed interrupt handlers.

• Unlock all previously locked variables and buffers.

LabWindows passes an integer value to the suspend function indicating whether LabWindows will call the
restart function at a later time. A nonzero value indicates that the restart function will be called and the I/O
should merely be suspended. A zero indicates that the restart function will not be called and the I/O should be
stopped.

When suspending I/O, the suspend function must keep track of all currently installed interrupts and locked
variables and buffers.

When stopping I/O, the suspend function must deregister the suspend and restart functions by calling the
following routine:

void _deregister_suspend_functions (void (*suspend_function) (int),
 void (*restart_function) (void));

The restart function must perform the following actions:

• Lock all the variables and buffers unlocked by the suspend function.

• Install all the interrupt handlers uninstalled by the suspend function.

Asynchronous I/O should be suspended only if _register_stop_functions does not meet your needs.

Note : An object module should not register both a stop and a suspend function. Only one method should be
used to stop asynchronous I/O.

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-7 December 1992 Edition

Standalone Applications

In a standalone application, the stop and suspend (without restart) functions are called only when the
standalone application terminates.

Example–Installing a Timer Tick Interrupt Handler

This section contains example source code for installing, coding, and removing a timer tick interrupt handler.

C Routines for Timer Tick Interrupt Handler

/* next_timer_ptr and cnt are placed in the */
/* default data segment */
void (interrupt ** near next_timer) (void);

extern int near cnt;
extern interrupt timer_tick ();
extern int _install_interrupt (int, void *, void *, void ***, void ***);
extern int _uninstall_interrupt (int, void *, void *);

int install_timer_tick (void)
{
 if (_install_interrupt (8, timer_tick, NULL, &next_timer, NULL) < 0)
 return (ERR);
 return(OK);
}

void remove_timer_tick(void)
{
 _uninstall_interrupt (8, timer_tick, NULL);
}

Assembly Code for the Interrupt Handler

.MODEL LARGE

.DATA

extrn _next_timer:dword

 public _cnt
 _cnt dw 0

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-8 © National Instruments Corpora tion

.CODE

 public _timer_tick
_timer_tick proc
 push bx
 push ds
; load ds with the default data segment
 mov bx,DGROUP
 mov ds,bx
; chain to the previously installed handler
 push ds
 lds bx,dword ptr [_next_timer]
 pushf
 call dword ptr [bx]
 pop ds
; perform timer handler operations
 inc _cnt
 pop ds
 pop bx
 iret
_timer_tick endp

end

Example–Installing a Passup Interrupt Handler

This section contains example source code for installing, coding, and removing a passup interrupt handler.

C Routines for Installing and Removing the Interrupt

extern interrupt pm_int ();
extern int _install_interrupt (int, void *, void *, void ***, void ***);
extern int _uninstall_interrupt (int, void *, void *);

/* place the pointers in the default data segment*/
void * near user_buffer_ptr;
void * near internal_interrupt_table;

int install_passup(int int_num)
{
 if ((internal_interrupt_table = malloc (SIZE)) == NULL)
 return (ERR);
/* the interrupt table is locked into extended memory */
 if (_lock_segment (internal_interrupt_table) == NULL)
 return (ERR);
/* the user buffer is locked into extended memory */
 if (_lock_segment (user_buffer_ptr) == NULL)
 return (ERR);

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-9 December 1992 Edition

 if (_install_interrupt (int_num, NULL, pm_int, NULL, NULL) < 0)
 return (ERR);
 return (OK);
}

void remove (int int_num)
{
 _uninstall_interrupt (int_num, NULL, pm_int);
 _unlock_segment (user_buffer_ptr);
 _unlock_segment (internal_interrupt_table);
}

Assembly Code for the Interrupt Handler

.MODEL LARGE

.DATA

extrn _user_buffer_ptr:dword

.CODE

 public _pm_int
_pm_int proc
 push es
 push bx
 push ds
 mov bx,DGROUP
 mov ds,bx
; load the user buffer address into es:bx
 les bx,dword ptr [_user_buffer_ptr]
 .
 .
 .
 pop ds
 pop bx
 pop es
 iret
_pm_int endp
end

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-10 © National Instruments Corpora tion

LabWindows Callable Functions

_deregister_stop_functions

Syntax: void _deregister_stop_functions (void (*message_function)(char *),
 void (*stop_function)(void));

Action: Deregisters the previously registered message and stop functions.

Remarks :
Input parameters:

message_function function pointer to the message function
stop_function function pointer to the stop function

_deregister_suspend_functions

Syntax: void _deregister_suspend_functions (void (*suspend_function)(int),
 void (*restart_function)(void));

Action: Deregisters the previously registered suspend and restart functions.

Remarks :
Input parameters:

suspend_function function pointer to the suspend function
restart_function function pointer to the restart function

_get_absolute_address

Syntax: long _get_absolute_address (void *pm_ptr);

Action: Returns the absolute nonsegmented physical address of the buffer pointed to by pm_ptr . The absolute
address remains constant as long as the buffer is locked. Do not call _get_absolute_address unless the
buffer has been locked.

Remarks :
Input parameter:

pm_ptrpointer to the data item

Return value:
Absolute address of the data item or NULL if the function failed.

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-11 December 1992 Edition

_install_interrupt

Syntax: int _install_interrupt (int vec_num,
void *rm_addr,
void *pm_addr,
void ***rm_chain_ptr,
void ***pm_chain_ptr);

Action: Installs an interrupt handler as either passdown or passup depending on the parameters rm_addr and
pm_addr . A passdown interrupt is installed by passing the address of the real mode interrupt handler in rm_addr
and a NULL in pm_addr . A passup interrupt is installed by passing the address of the protected mode interrupt
handler in pm_addr and a NULL in rm_addr .

Along with rm_addr and pm_addr , an associated rm_chain_ptr and pm_chain_ptr must be passed to
_install_interrupt . rm_chain_ptr and pm_chain_ptr contain the address of a pointer to a function
pointer. These function pointers are used to chain to the previously installed interrupt handler.

Remarks :
Input parameters:

vec_num interrupt vector number
rm_addr address of real mode interrupt routine

or NULL
pm_addr address of protected mode interrupt

routine or NULL
rm_chain_ptr address of a pointer to a function pointer used to chain

to previously installed real mode interrupt handler
pm_chain_ptr address of a pointer to a function pointer used to chain

to previously installed protected mode interrupt handler

Return values:
0 success
-1 general failure
-2 invalid parameter(s)
-3 limit of 50 installed interrupts exceeded
-4 insufficient conventional or extended memory
-5 limit of installed passup interrupts exceeded
-6 interrupt type (passdown or passup) conflicts with the interrupt

handler type previously installed at the interrupt vector

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-12 © National Instruments Corpora tion

_lock_segment

Syntax: long _lock_segment (void *pm_ptr);

Action: Locks the segment associated with pm_ptr into memory (either extended or conventional memory) and
returns the absolute nonsegmented physical address of the buffer pointed to by pm_ptr .

Remarks :
Input parameter:

pm_ptrpointer to the buffer being locked into memory.

Return value:
Absolute address of the locked buffer or NULL if failed.

_register_stop_functions

Syntax: void _register_stop_functions (void (*message_function)(char *),
 void (*stop_function)(void));

Action: Registers a message and stop function. The message function passes a pointer to a character buffer
and must fill the buffer with a message (no greater than 60 characters) pertaining to the operation of the stop
function. The stop function must perform the following actions:

• Stop any DMA transfers.

• Uninstall all previously installed interrupt handlers.

• Unlock all previously locked variables and buffers.

• Deregister the message and stop functions by calling the function
_deregister_stop_functions .

Note : Only one set of stop and message functions is registered when _register_stop_functions is
called multiple times with the same parameters.

Remarks :
Input parameters:

message_function function pointer to the message function
stop_function function pointer to the stop function

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-13 December 1992 Edition

_register_suspend_functions

Syntax: void _register_suspend_functions (void (*suspend_function)(int),
 void (*restart_function)(void));

Action: Registers a suspend and restart function. The suspend function must perform the following
actions:

• Stop any DMA transfers.

• Uninstall all previously installed interrupt handlers.

• Unlock all previously locked variables and buffers.

The suspend function is passed an integer value indicating whether the restart function will be called at a later
time. A nonzero indicates that the restart function will be called and that the I/O should merely be suspended.
A zero indicates that the restart function will not be called and that the I/O should be stopped.

When suspending I/O, the suspend function must keep track of all currently installed interrupts and locked
variables and buffers.

When stopping I/O, the suspend function must deregister the suspend and restart functions by calling the
routine _deregister_suspend_functions .

The restart function must perform the following actions:

• Lock all the variables and buffers unlocked by the suspend function.

• Install all the interrupt handlers uninstalled by the suspend function.

Note : Only one set of suspend and restart functions is registered when
_register_suspend_functions is called multiple times with the same parameters.

Remarks :
Input parameters:

suspend_function function pointer to the suspend function
restart_function function pointer to the restart function

Programming Guidelines for Installing Interrupts and Performing DMA Chapter 1

December 1992 Edition 1-14 © National Instruments Corpora tion

_set_absolute_access

Syntax: int _set_absolute_access (unsigned seg, int access);

Action: Register a transparent segment as either code or data. LabWindows provides 48 transparent segments:

A000, A200, A400, ..., FE00

Remarks :
Input parameters:

seg transparent segment value
accessaccess type (0 = data, 1 = code)

Return value:
Zero if successful or nonzero if failed.

_uninstall_interrupt

Syntax: int _uninstall_interrupt (int vec_num,
 void *rm_addr,
 void *pm_addr);

Action: Removes a passdown or passup interrupt handler by restoring the original interrupt handler. The
parameters rm_addr and pm_addr must match the values used to install the interrupt handler using
_install_interrupt .

Remarks :
Input parameters:

vec_num interrupt vector number
rm_addr address of real mode interrupt routine or NULL
pm_addr address of protected mode interrupt routine or NULL

Return values:
0 success
-1 failure

Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA

© National Instruments Corporation 1-15 December 1992 Edition

_unlock_segment

Syntax: void _unlock_segment (void *pm_ptr);

Action: Unlocks a previously locked variable buffer, allowing the Virtual Memory Manager to swap the segment in
and out of memory. If _lock_segment has been called on the same pointer more than once,
_unlock_segment must be called on the pointer an equal number of times.

Any dynamically allocated memory that has been locked using _lock_segment must be unlocked before the
memory is freed.

Note: The segment is not unlocked if any other variables or buffers in the segment are currently locked.

Remarks :
Input parameter:

pm_ptrpointer to the buffer being unlocked. The same pointer used
to lock the buffer must also be used to unlock the buffer.

© National Instruments Corporation 2-1 December 1992 Edition

Chapter 2
Programming Guidelines for Installing
Bimodal Interrupt Handlers

This chapter contains general guidelines for coding and installing bimodal interrupt handlers within LabWindows
loadable object modules.

Bimodal interrupt handlers are used in LabWindows to reduce the maximum potential delay in servicing interrupts.
Interrupt servicing can be delayed when an interrupt occurs during a mode switch. Mode switches are caused by
clock interrupts, DOS service calls (such as file I/O), and GPIB handler calls. Interrupt servicing can also be
delayed if the processor must switch modes to service the interrupt. For instance, when a passup interrupt occurs in
real mode, the processor must switch to protected mode to service the interrupt. Depending on the computer, the
maximum potential delay for a passup interrupt can be as long as 4 milliseconds or as brief as 200 microseconds.

A bimodal interrupt handler establishes routines for processing the interrupt in both real and protected mode. In this
way, no mode switches are required to service a bimodal interrupt. However, the potential delay is not entirely
eliminated. In particular, if the bimodal interrupt occurs during a clock interrupt, the bimodal interrupt is not
serviced until the clock interrupt handler and any related mode-switching have completed. In general, bimodal
interrupt handlers reduce the maximum interrupt latency period by a factor of two, approximately.

Like passup handlers, bimodal handlers are not allowed to chain to the previously installed interrupt handler.

Accessing Memory from Bimodal Interrupt Handlers

Bimodal interrupt handlers must not access user variables or buffers (that is, variables or buffers allocated within a
user's program and passed to a library function). These items are allocated in the same segments as other variables
and buffers that may have to be locked in extended memory. Bimodal handlers can only access data that is statically
or dynamically allocated within the loadable object module.

Because of the differences in real and protected mode addressing, interrupt routines must be aware of the address
type (real, transparent, or protected) being used to access data. In real mode, bimodal interrupt handlers must use
real mode or transparent addresses. In protected mode, bimodal interrupt handlers must use protected mode or
transparent addresses. In addition, the data must be reside in conventional memory.

Ideally, a bimodal interrupt routine should access only a small number of bytes (that is, less than 100) and the data
should be in the default data segment. Data items in the default data segment have transparent addresses. No other
data items have transparent addresses.

If the number of bytes is too large to place in the default data segment, the following alternatives are available.

• You can access a dynamically allocated buffer if it contains 65,536 bytes. To allocate such a buffer, use
the following call:

ptr = _lw_malloc (0);

To free the buffer, call:

_lw_free (ptr);

Programming Guidelines for Installing Bimodal Interrupt Handlers Chapter 2

December 1992 Edition 2-2 © National Instruments Corporation

• The interrupt handler can access data declared within the library code only if the total amount of data declared
within the object module's data segment is greater than a LabWindows threshold. Currently, this threshold is
set at 100 bytes. This condition guarantees that the data is allocated in its own segment. Please consult
National Instruments before accessing data declared within the library module.

Coding Bimodal Interrupts

This section provides guidelines for installing, coding, and removing a bimodal interrupt handler. A bimodal
interrupt handler contains both a real mode routine and a protected mode routine.

Installing the Bimodal Interrupt Handler

To install a bimodal interrupt handler, follow these steps:

1. Lock into conventional memory any variables used by the interrupt routines that are not in the default data
segment. Use the following LabWindows function:

void * _lock_segment_low (void *pm_ptr)

If successful, _lock_segment_low returns a real mode pointer to the locked buffer. If unsuccessful, a
NULL is returned. pm_ptr is a pointer to the variable being locked. The real mode address should be stored
in the default data segment so the real mode interrupt routine can access it.

2. Install both the real mode and protected mode interrupt routines using the LabWindows call:

int _install_interrupt (int vec_num,
void *rm_addr,
void *pm_addr,
void **rm_chain_ptr,
void ** pm_chain_ptr);

The address of the real mode entry point for the interrupt handler should be passed in rm_addr , while the
address of the protected mode entry point for the interrupt handler should be passed in pm_addr .
rm_chain_ptr and pm_chain_ptr should be NULL because chaining is not permitted in bimodal
interrupt handlers.

Coding the Interrupt Handler

It may be possible to write a single interrupt handler that works in both real and protected mode. More than likely,
separate entry points will be required. The majority of interrupt handler code can be shared by both real and
protected mode handlers. The separate entry points can serve to set flags or make address adjustments.

A bimodal interrupt handler should not be in the same code segment as a passup interrupt handler.

Chapter 2 Programming Guidelines for Installing Bimodal Interrupt Handlers

© National Instruments Corporation 2-3 December 1992 Edition

Removing the Bimodal Interrupt Handler

To remove a bimodal interrupt handler, follow these steps:

1. Use the LabWindows function _uninstall_interrupt to restore the original real mode and protected
mode interrupt handlers.

int _uninstall_interrupt (int vec_num, void *rm_addr, void *pm_addr);

Note: The same parameters used to install the interrupt handler must also be used to uninstall the interrupt.

2. Unlock any previously locked variables. Use the following LabWindows function:

void _unlock_segment_low (void * pm_ptr);

The same pointer used to lock the variable must also be used to unlock it. If you call
_lock_segment_low on the same pointer more than once, you must call _unlock_segment_low on the
pointer an equal number of times. If a locked variable is dynamically allocated, you must unlock the variable
before freeing it.

Example–Installing a Bimodal Interrupt Handler

This section contains example source code for installing, coding, and removing a bimodal interrupt handler.

C Routines for Installing and Removing the Interrupt

extern interrupt rm_int ();
extern interrupt pm_int ();
extern void * _lock_segment_low (void *);
extern void _unlock_segment_low void *);
extern int _install_interrupt (int, void *, void *, void ***, void ***);
extern int _uninstall_interrupt (int, void *, void *);

/* iobuffer is allocated in its own segment */
int iobuffer[32768];
/* rmptr_iobuffer is placed in the default data */
/* segment by declaring it near */
void * near rmptr_iobuffer;

int install(int int_num)
{
 if ((rmptr_iobuffer = _lock_segment_low (iobuffer))
 == NULL)
 return (ERR);
 if (_install_interrupt (int_num, rm_int, pm_int,
 NULL, NULL) < 0)
 return (ERR);
 return (OK);
}

void remove(int int_num)
{

Programming Guidelines for Installing Bimodal Interrupt Handlers Chapter 2

December 1992 Edition 2-4 © National Instruments Corporation

_uninstall_interrupt (int_num, rm_int, pm_int);
_unlock_segment_low (iobuffer);

}

Assembly Code for the Interrupt Handler

.MODEL LARGE

.DATA

RM EQU 0
PM EQU 1

processor_mode dw ?

extrn _iobuffer:dword
extrn _rmptr_iobuffer:dword

.CODE

 public _pm_int
_pm_int:
 push bx
 push ds
 mov bx,DGROUP
 mov ds,bx
; save the previous value of the processor mode
 push word ptr [processor_mode]
 mov word ptr [processor_mode],PM
; load es:bx with pointer to our I/O buffer
 les bx,_iobuffer
 jmp handler

_rm_int:
 push bx
 push ds
 mov bx,DGROUP
 mov ds,bx
; save the previous value of the processor mode
 push word ptr [processor_mode]
 mov byte ptr [processor_mode],RM
; load es:bx with pointer to our I/O buffer
 les bx,_rmptr_iobuffer
 jmp handler

handler:
; process the external hardware interrupt

Chapter 2 Programming Guidelines for Installing Bimodal Interrupt Handlers

© National Instruments Corporation 2-5 December 1992 Edition

; restore the previous processor mode value
 pop word ptr [processor_mode]
 pop ds
 pop bx
 iret

end

Programming Guidelines for Installing Bimodal Interrupt Handlers Chapter 2

December 1992 Edition 2-6 © National Instruments Corporation

LabWindows Callable Functions

_install_interrupt

Syntax: int _install_interrupt (int vec_num,
 void *rm_addr,
 void *pm_addr,
 void ***rm_chain_ptr,
 void ***pm_chain_ptr);

Action: Installs an interrupt handler as either passdown, passup, or bimodal depending on the parameters rm_addr
and pm_addr . A passdown interrupt is installed by passing the address of the real mode interrupt handler in
rm_addr and a NULL in pm_addr . A passup interrupt is installed by passing the address of the protected mode
interrupt handler in pm_addr and a NULL in rm_addr . A bimodal interrupt is installed by passing the address of
the real mode entry point in rm_addr and the address of the protected mode entry point in pm_addr.

Along with rm_addr and pm_addr , an associated rm_chain_ptr and pm_chain_ptr can be passed to
_install_interrupt . rm_chain_ptr and pm_chain_ptr contain the address of a pointer to a function
pointer. These function pointers are used to chain to the previously installed interrupt handler. rm_chain_ptr
and pm_chain_ptr should be NULL for bimodal interrupts.

Remarks :
Input parameters:

vec_num interrupt vector number
rm_addr address of real mode interrupt routine or NULL
pm_addr address of protected mode interrupt routine or NULL
rm_chain_ptraddress of a pointer to a function pointer used to

chain to a previously installed real mode interrupt
handler

pm_chain_ptraddress of a pointer to a function pointer used to
chain to a previously installed protected mode

interrupt handler

Return values:
0 success
-1 general failure
-2 invalid parameter(s)
-3 limit of 50 installed interrupts exceeded
-4 insufficient conventional or extended memory
-5 limit of installed passup interrupts exceeded
-6 interrupt type (passdown, passup, or bimodal) conflicts with the

interrupt handler type previously installed at the interrupt vector

Chapter 2 Programming Guidelines for Installing Bimodal Interrupt Handlers

© National Instruments Corporation 2-7 December 1992 Edition

_lock_segment_low

Syntax: void * _lock_segment_low (void *pm_ptr);

Action: Locks the segment associated with pm_ptr into conventional memory and returns a real mode pointer to
the buffer pointed to by pm_ptr .

Remarks :
Input parameter:

pm_ptrpointer to the buffer being locked into conventional memory.

Return value:
Real mode pointer to the locked buffer or NULL if failed.

_uninstall_interrupt

Syntax: int _uninstall_interrupt (int vec_num,
void *rm_addr,
void *pm_addr);

Action: Removes a passdown, passup, or bimodal interrupt handler by restoring the original interrupt handler. The
parameters rm_addr and pm_addr must match the values used to install the interrupt handler using
_install_interrupt .

Remarks :
Input parameters:

vec_num interrupt vector number
rm_addr address of real mode interrupt routine or NULL
pm_addr address of protected mode interrupt routine or NULL

Return values:
0 success
-1 failure

Programming Guidelines for Installing Bimodal Interrupt Handlers Chapter 2

December 1992 Edition 2-8 © National Instruments Corporation

_unlock_segment_low

Syntax: void _unlock_segment_low (void *pm_ptr);

Action: Unlocks a previously locked buffer by moving the entire segment into extended memory. If
_lock_segment_low has been called on the same pointer more than once, _unlock_segment_low must be
called on the pointer an equal number of times.

Any dynamically allocated memory that has been locked using _lock_segment_low must be unlocked before
the memory is freed.

Note: The segment is not unlocked if any other variables or buffers in the segment are currently locked.

Remarks :
Input parameter:

pm_ptrpointer to the buffer being unlocked. The same pointer used
to lock the buffer must also be used to unlock the buffer.

	LabWindows Guidelines for Interrupt and DMA Programming in Loadable Object Modules
	Contact Information
	Contents
	Chapter 1 Programming Guidelines for Installing Interrupts and Performing DMA
	Writing Interrupt Routines
	Accessing Memory from Interrupt Handlers
	Restrictions on Interrupt Handlers
	Determining the Type of Interrupt to Use
	Timer Tick Interrupt
	Passup Interrupts

	Loss of Interrupts During Mode Switches

	Accessing Absolute Addresses
	Performing DMA Operations
	Providing Support for Stopping Asynchronous I/O
	Suspending Asynchronous I/O
	Standalone Applications

	Example--Installing a Timer Tick Interrupt Handler
	C Routines for Timer Tick Interrupt Handler
	Assembly Code for the Interrupt Handler

	Example--Installing a Passup Interrupt Handler
	C Routines for Installing and Removing the Interrupt
	Assembly Code for the Interrupt Handler

	LabWindows Callable Functions
	_deregister_stop_functions
	_deregister_suspend_functions
	_get_absolute_address
	_install_interrupt
	_lock_segment
	_register_stop_functions
	_register_suspend_functions
	_set_absolute_access
	_uninstall_interrupt
	_unlock_segment

	Chapter 2 Programming Guidelines for Installing Bimodal Interrupt Handlers
	Accessing Memory from Bimodal Interrupt Handlers
	Coding Bimodal Interrupts
	Installing the Bimodal Interrupt Handler
	Coding the Interrupt Handler
	Removing the Bimodal Interrupt Handler

	Example--Installing a Bimodal Interrupt Handler
	C Routines for Installing and Removing the Interrupt
	Assembly Code for the Interrupt Handler

	LabWindows Callable Functions
	_install_interrupt
	_lock_segment_low
	_uninstall_interrupt
	_unlock_segment_low

